Classical graph algorithms work well for combinatorial problems that can be thoroughly formalized and abstracted. Once the algorithm is derived, it generalizes to instances of any size. However, developing an algorithm that handles complex structures and interactions in the real world can be challenging. Rather than specifying the algorithm, we can try to learn it from the graph-structured data. Graph Neural Networks (GNNs) are inherently capable of working on graph structures; however, they struggle to generalize well, and learning on larger instances is challenging. In order to scale, we focus on a recurrent architecture design that can learn simple graph problems end to end on smaller graphs and then extrapolate to larger instances. As our main contribution, we identify three essential techniques for recurrent GNNs to scale. By using (i) skip connections, (ii) state regularization, and (iii) edge convolutions, we can guide GNNs toward extrapolation. This allows us to train on small graphs and apply the same model to much larger graphs during inference. Moreover, we empirically validate the extrapolation capabilities of our GNNs on algorithmic datasets.
translated by 谷歌翻译
Denoising diffusion probabilistic models and score matching models have proven to be very powerful for generative tasks. While these approaches have also been applied to the generation of discrete graphs, they have, so far, relied on continuous Gaussian perturbations. Instead, in this work, we suggest using discrete noise for the forward Markov process. This ensures that in every intermediate step the graph remains discrete. Compared to the previous approach, our experimental results on four datasets and multiple architectures show that using a discrete noising process results in higher quality generated samples indicated with an average MMDs reduced by a factor of 1.5. Furthermore, the number of denoising steps is reduced from 1000 to 32 steps leading to a 30 times faster sampling procedure.
translated by 谷歌翻译
语法推断是计算学习理论中的一个经典问题,也是自然语言处理中更广泛影响的话题。我们将语法视为计算模型,并提出了一种新型的神经方法,以从正面和负面实例中诱导常规语法。我们的模型是完全可以解释的,其中间结果可直接解释为部分分析,并且可以在提供足够的数据时将其用于学习任意的常规语法。我们的方法始终在各种复杂性测试中获得高召回和精确得分。我们使详细的结果和代码随时可用。
translated by 谷歌翻译
学习最简单的计算模式 - 周期性 - 是神经网络中强有力的研究中的一个开放问题。我们正式化了针对周期性信号的外推概括的问题,并系统地研究了一套基准测试任务的经典,基于人群和最近提出的周期性架构的概括能力。我们发现,无论其周期性参数的训练性如何,定期和“蛇”激活功能在周期性外推时始终失败。此外,我们的结果表明,传统的顺序模型仍然优于专门为外推设计的新型体系结构,而这些架构反过来又受到基于人群的培训的胜过。我们使我们的基准测试和评估工具包,Perkit,可用且易于访问,以促进该地区的未来工作。
translated by 谷歌翻译
整数序列对于承认完整描述的概念的建模至关重要。我们介绍了有关学习此类概念的新颖观点,并放下一组基准测试任务,旨在通过机器学习模型进行概念理解。这些任务间接评估模型的抽象能力,并挑战它们,以在观察代表性示例中获得的知识,从插值和外向上进行推理。为了进一步研究知识代表和推理的研究,我们介绍了事实,即“精选抽象理解工具包”。该工具包围绕着包含有机和合成条目的整数序列的大型数据集,用于数据预处理和生成的库,一组模型性能评估工具以及基线模型实现的集合,从而实现了未来的进步,以实现未来的进步舒适。
translated by 谷歌翻译
由于它们的多功能性,图形结构允许包含数据的单独实体之间复杂关系的表示。我们通过引入图形步行程序将两个顶点集之间的连接概念正式化。我们提供了两种算法,用于挖掘确定性的图形步行程序,以增加长度的顺序产生程序。这些程序表征了整个图的上下文中给定的两个顶点集之间的线性长距离关系。
translated by 谷歌翻译
我们提出了一个新的图形神经网络,我们称为AgentNet,该网络专为图形级任务而设计。 AgentNet的灵感来自子宫性算法,具有独立于图形大小的计算复杂性。代理Net的体系结构从根本上与已知图神经网络的体系结构不同。在AgentNet中,一些受过训练的\ textit {神经代理}智能地行走图,然后共同决定输出。我们提供了对AgentNet的广泛理论分析:我们表明,代理可以学会系统地探索其邻居,并且AgentNet可以区分某些甚至3-WL无法区分的结构。此外,AgentNet能够将任何两个图形分开,这些图在子图方面完全不同。我们通过在难以辨认的图和现实图形分类任务上进行合成实验来确认这些理论结果。在这两种情况下,我们不仅与标准GNN相比,而且与计算更昂贵的GNN扩展相比。
translated by 谷歌翻译
眼目光信息的收集为人类认知,健康和行为的许多关键方面提供了一个窗口。此外,许多神经科学研究补充了从眼睛跟踪中获得的行为信息,以及脑电图(EEG)提供的高时间分辨率和神经生理学标记。必不可少的眼睛跟踪软件处理步骤之一是将连续数据流的分割为与扫视,固定和眨眼等眼睛跟踪应用程序相关的事件。在这里,我们介绍了Detrtime,这是一个新颖的时间序列分割框架,该框架创建了不需要额外记录的眼睛跟踪模式并仅依靠脑电图数据的眼部事件检测器。我们的端到端基于深度学习的框架将计算机视觉的最新进展带到了脑电图数据的《时代》系列分割的最前沿。 Detr Time在各种眼睛追踪实验范式上实现眼部事件检测中的最新性能。除此之外,我们还提供了证据表明我们的模型在脑电图阶段分割的任务中很好地概括了。
translated by 谷歌翻译
大多数图形神经网络(GNNS)无法区分某些图形或图中的某些节点。这使得无法解决某些分类任务。但是,在这些模型中添加其他节点功能可以解决此问题。我们介绍了几种这样的增强,包括(i)位置节点嵌入,(ii)规范节点ID和(iii)随机特征。这些扩展是由理论结果激励的,并通过对合成子图检测任务进行广泛测试来证实。我们发现位置嵌入在这些任务中的其他扩展大大超过了其他扩展。此外,位置嵌入具有更好的样品效率,在不同的图形分布上表现良好,甚至超过了地面真实节点位置。最后,我们表明,不同的增强功能在既定的GNN基准中都具有竞争力,并建议何时使用它们。
translated by 谷歌翻译
我们从光谱的角度解决图形生成问题,首先生成图形laplacian光谱的主要部分,然后构建与这些特征值和特征向量相匹配的图。光谱调节允许直接建模全局和局部图结构,并有助于克服单发图生成器的表达性和模式崩溃问题。我们的新颖的甘(Spectre)称为Spectre,可以使用一声模型来产生比以前可能更大的图。Spectre的表现优于最先进的深度自动回归发电机在建模忠诚方面,同时还避免了昂贵的顺序产生和对节点排序的依赖。一个很好的例子,在相当大的合成和现实图形中,Specter的幽灵比最佳竞争对手的最佳竞争对手的改进是4到170倍,该竞争对手不合适,比自回旋发电机快23至30倍。
translated by 谷歌翻译